Classification of Pneumoconiosis on HRCT Images for Computer-Aided Diagnosis

نویسندگان

  • Wei Zhao
  • Rui Xu
  • Yasushi Hirano
  • Rie Tachibana
  • Shoji Kido
  • Narufumi Suganuma
چکیده

This paper describes a computer-aided diagnosis (CAD) method to classify pneumoconiosis on HRCT images. In Japan, the pneumoconiosis is divided into 4 types according to the density of nodules: Type 1 (no nodules), Type 2 (few small nodules), Type 3-a (numerous small nodules) and Type 3-b (numerous small nodules and presence of large nodules). Because most pneumoconiotic nodules are small-sized and irregular-shape, only few nodules can be detected by conventional nodule extraction methods, which would affect the classification of pneumoconiosis. To improve the performance of nodule extraction, we proposed a filter based on analysis the eigenvalues of Hessian matrix. The classification of pneumoconiosis is performed in the following steps: Firstly the large-sized nodules were extracted and cases of type 3-b were recognized. Secondly, for the rest cases, the small nodules were detected and false positives were eliminated. Thirdly we adopted a bag-of-features-based method to generate input vectors for a support vector machine (SVM) classifier. Finally cases of type 1,2 and 3-a were classified. The proposed method was evaluated on 175 HRCT scans of 112 subjects. The average accuracy of classification is 90.6%. Experimental result shows that our method would be helpful to classify pneumoconiosis on HRCT. key words: pneumoconiosis, computer-aided diagnosis, HRCT, Hessian matrix, bag-of-features

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A CAD System Framework for the Automatic Diagnosis and Annotation of Histological and Bone Marrow Images

Due to ever increasing of medical images data in the world’s medical centers and recent developments in hardware and technology of medical imaging, necessity of medical data software analysis is needed. Equipping medical science with intelligent tools in diagnosis and treatment of illnesses has resulted in reduction of physicians’ errors and physical and financial damages. In this article we pr...

متن کامل

A Hierarchical Classification Method for Breast Tumor Detection

Introduction Breast cancer is the second cause of mortality among women. Early detection of it can enhance the chance of survival. Screening systems such as mammography cannot perfectly differentiate between patients and healthy individuals. Computer-aided diagnosis can help physicians make a more accurate diagnosis. Materials and Methods Regarding the importance of separating normal and abnorm...

متن کامل

Combining the Gabor and Histogram Features for Classifying Diffuse Lung Opacities in Thin-Section Computed Tomography

The classification of diffuse lung opacities in thinsection computed tomography(HRCT) images is an important step for developing a computer-aided diagnosis(CAD) system. In designing the CAD system for classifying diffuse lung opacities in HRCT images, a Gabor filter-based approach has been shown to be effective. In order to improve further the classification performance of the CAD system, we ex...

متن کامل

Automated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy

Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...

متن کامل

Classification of Idiopathic Interstitial Pneumonia CT Images using Convolutional-net with Sparse Feature Extractors

We propose a computer aided diagnosis (CAD) system for classification of idiopathic interstitial pneumonias (IIPs). High resolution computed tomography (HRCT) images are considered as effective for diagnosis of IIPs. Our proposed CAD system is based on the convolutionalnet that is bio-plausible neural network model inspired from the visual system such like human. The convolutional-net extract l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 96-D  شماره 

صفحات  -

تاریخ انتشار 2013